

6/1 <u>Place value in numbers to 10million</u>

The position of the digit gives its size

1	Ten millions
2	Millions
3	Hundred thousands
4	Ten thousands
5	thousands
0	hundreds
7	tens
8	units

<u>Example</u>

The value of the digit '1' is 10 000 000 The value of the digit '2' is 2 000 000 The value of the digit '3' is $300\ 000$ The value of the digit '4' is $40\ 000$

6/1 Round whole numbers

_ _ _ _ _ _ _ _

000
ł.
2

<u>4 or less</u>? YES – leave 'round off digit' unchanged – Replace following digits with zeros

ANSWER - 340 000

Example 2- Round 345 679 to the nearest 10 000

- \circ Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 5

<u>5 or more</u>? YES – add one to 'round off digit' - Replace following digits with zeros

ANSWER - 350 000

6/2 <u>Negative numbers</u>	
-3 -2 -1 0 1 2	2 3
2 > -2 → We say 2 is big -2 < 2 → We say -2 is le	
The difference between 2 and -2	2 = 4 (see line)
Remember the rules: • When subtracting go dow • When adding go up the n	
 8 + - 2 is the same as 8 - + 2 is the same as 8 2 is the same as 	8 - 2 = 6
6/3 <u>Multiply numbers & es</u>	stimate to check
152	N METHOD
<u> 34×</u> 608	(×4)
<u>4560</u>	、
5 <u>168</u> 6/3 <u>Use estimates to che</u> o	ck calculations
152 × 34 □	
≈150 × 30	≈ is the symbol for
≈4500	'roughly equals'
6/3 <u>Divide numbers & esti</u>	mate to check
<u>With a remainder also express</u>	ed as a fraction
	ELTER METHOD
$ \begin{array}{r} 0 & 2 & 8 \\ 15 & 4 & 3 & 2 \\ -3 & 0 & 4 \\ 1 & 3 & 2 \\ -1 & 2 & 0 \\ 1 & 2 \\ 1 & 2 \end{array} $	028 r 12 15)4 ⁴ 3 ¹³ 2
ANSWER - 432 ÷ 15 = =	28 r 12 28 ¹² / ₁₅

6/3 <u>continued</u> <u>With a remainder expressed as a decimal</u> $15) \frac{028.8}{432.0} \frac{028.8}{15)4^43^{13}2.^{12}0}$	e.g. 3 + <mark>4 x 6</mark> - 5 = 22 first (2 + 1) x 3 = 9 first
$ \frac{-3 0}{1 3 2} + \frac{-120}{12} $ -12 ANSWER - 432 ÷ 15 = 28 . 8 6/3 <u>Use estimates to check calculations</u> 432 ÷ 15 ≈ 450 ÷ 15 ≈ 30	6/6 Addition • Line up the digits in the correct columns e.g. $48p + £2.84 + £9$ 0.48 2.84 <u>9.00+</u> £1 <u>2.32</u> 11 1
6/4 Factors, multiples & primes	 6/6 <u>Subtraction</u> Line up the digits in the correct columns
 FACTORS are what divides exactly into a number e.g. Factors of 12 are: Factors of 18 are: 1 1 2 6 The common factors of 12 & 18 are: 1, 2, 3, 6, The Highest Common Factor is: 6 PRIME NUMBERS have only TWO factors e.g. Factors of 7 are: Factors of 13 are 1 7 1 13 So 7 and 13 are both prime numbers MULTIPLES are the times table answers e.g. Multiples of 5 are: Multiples of 4 are: 5 10 15 20 25 	e.g. $645 - 427$ H T U $6^{3}A^{1}5$ $4 2 7 - 2 1 8^{-1}$ 6/7 Equivalent fractions $\circ To \text{ simplify a fraction}$ Example: $\frac{27}{36}$ First find the highest common factor of the numerator and denominator - which is 9, then divid $\frac{27}{36 \div 9}^{\div 9} = \frac{3}{4}$ $\circ To \text{ change fractions to the same}$ denominator Example: $\frac{3}{4}$ and $\frac{2}{3}$
6/5 Order of operations Bracket Indices Divide Multiply } Do these in the order they appear Add Subtract } Do these in the order they appear	Find the highest common multiple of the denominators - which is 12, then multiply: $\frac{3}{4}_{x3}^{x3} = \frac{9}{12} \text{ and } \frac{2^{x4}}{3^{x4}} = \frac{8}{12}$

6/8 Add & subtract fractions

 \circ $\,$ Make the denominators the same $\,$

e.g. $\frac{1}{5} + \frac{7}{10}$	e.g. $\frac{4}{5} - \frac{2}{3}$
= $\frac{2}{10} + \frac{7}{10}$	= $\frac{12}{15} - \frac{10}{15}$
$= \frac{10}{10} \frac{10}{10}$	$= \frac{15}{15}$ $= \frac{2}{15}$ Do <u>not</u> add denominators

6/9 Multiply fractions

• Write 5 as $\frac{5}{1}$ • Multiply numerators & denominators e.g. $5 \times \frac{2}{3}$ $= \frac{5}{1} \times \frac{2}{3}$ $= \frac{10}{3} = 3\frac{1}{3}$

6/9 Divide fractions

- Write 5 as $\frac{5}{1}$
- Invert the fraction after ÷ sign
- Multiply numerators & denominators

e.g. $\frac{2}{3} \div 5$	e.g. $\frac{4}{5} \div \frac{2}{3}$
$= \frac{3}{2} \times \frac{1}{5}$	$=\frac{4}{5} \times \frac{3}{2}$
$\frac{2}{3}$ = $\frac{3}{12}$	$=\frac{12}{12}=1\frac{2}{12}=1\frac{1}{12}$
10	$10^{-1}10^{-5}$

6/10 <u>Multiply/divide decimals by 10, 100</u>

thousands	hundreds	tens	units	•	tenths	hundredths	thousandths
4	3	5	2	•	6	1	7

• To <u>multiply</u> by 10, move each digit one place to the <u>left</u>

e.g. 35.6 x 10 = 356

Hundreds	Tens	Units	•	tenths
	3	_ 5	•	- 6
3 🖌	5	6	•	

• To <u>divide</u> by 10, move each digit one place to the <u>right</u>

e.g. 35.6 ÷ 10 = 356= 3.56

Tens	Units	•	tenths	hundredths
3 <	5 _	•	6	
	3	•	5	6

- To <u>multiply</u> by 100, move each digit 2 places to the <u>left</u>
- To <u>divide</u> by 100, move each digit 2 places to the <u>right</u>

AN ALTERNATE METHOD

Instead of moving the <u>digits</u> Move the <u>decimal point the opposite way</u>

6/11 <u>Multiply decimals</u>

Step 1 - remove the decimal point Step 2 - multiply the two numbers Step 3 - Put the decimal back in

<u>Example</u> :	0.06 x 8			
	=> 6 x	8		
	=> 48			
	=> 0.48			

6/11 Divide decimals

Use the bus shelter method Keep the decimal point in the same place Add zeros for remainders

<u>Example</u>: 6.28 ÷ 5 <u>1 . 2 5 6</u> 5) 6 . ¹2²8³0

6/12 <u>Fraction, decimal, percentage</u> <u>equivalents</u>

LEARN THESE:

$$\frac{1}{4} = 0.25 = 25\%$$
$$\frac{1}{2} = 0.5 = 50\%$$
$$\frac{3}{4} = 0.75 = 75\%$$
$$\frac{1}{10} = 0.1 = 10\%$$

• Percentage to decimal to fraction $27\% = 0.27 = \frac{27}{100}$ $7\% = 0.07 = \frac{7}{100}$ $70\% = 0.7 = \frac{70}{100} = \frac{7}{10}$

• Decimal to percentage to fraction $0.3 = 30\% = \frac{3}{10}$ $0.03 = 3\% = \frac{3}{100}$ $0.39 = 39\% = \frac{39}{100}$

• Fraction to decimal to percentage

$$\frac{4}{5} = \frac{30}{100} = 80\% = 0.8$$

Change to 100

Λ

 $\frac{0.375}{\frac{3}{8}} = 3 \div 8 = 8)3.^{3}0^{6}0^{4}0 = 0.375 = 37.5\%$

$$\frac{9}{12} = \frac{3}{4} = 0.75 = 75\%$$

Cancel by 3

6/13 Fraction of quantity

<u>4</u> means ÷ 5 x 4
 <u>5</u>
 e.g. To find <u>4</u> of £40
 <u>5</u>
 £40 ÷ 5 x 4 = £40

6/13 <u>Percentage of quantity</u>

 $\frac{\text{Use only}}{\circ} 50\% - \frac{1}{2}$

 $\circ 10\% - \frac{1}{10}$ $\circ 1\% - \frac{1}{100}$

Example : To find 35% of £400 10% = £40 20% = £80 5% = £20 35% = £140

6/14 <u>Similar shapes</u>

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

6/20 <u>Perimeter and area of shapes</u>

Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares

			В		
A					
С					
				A Image: Constraint of the sector of the s	A

Perimeter of each shape is different A – 12; B – 14; C –16

6/21 <u>Area of parallelogram & triangle</u>

6/22 Volume

• Volume of cuboid Volume = $1 \times w \times h$ = $5 \times 3 \times 2$ = 30 cm^3 3 cm• Volume of cube Volume = $1 \times w \times h$ = $3 \times 3 \times 3$ = 27 m^3 3 m3 m

6/23 Construct 2D shapes

Example : Triangle with side and angles given

- Draw line AB = 7cm
- Draw angle 34⁰ at point A from line AB
- \circ Draw angle 47^o at point B from line AB
- \circ $\;$ Extend to intersect the lines at C $\;$

6/23 <u>Construct 3D shapes</u>

CUBE & its net

CUBOID & its net

TRIANGULAR PRISM & its net

• Sum of exterior angles is always 360°

interior & exterior angle add up to 180°

• the interior angles add up to: Triangle = $1 \times 180^{\circ} = 180^{\circ}$ Quadrilateral = $2 \times 180^{\circ} = 360^{\circ}$ Pentagon = $3 \times 180^{\circ} = 540^{\circ}$ Hexagon = $4 \times 180^{\circ} = 720^{\circ}$ etc

6/25 Parts of a circle

0

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. (d = $2 \times r$) or (r = $\frac{1}{2} \times d$)

6/29 <u>Graphs</u>

• Pie chart

Transport	Frequency	Angle
Car	13	13 × 9=117 ⁰
Bus	4	4 x 9=36 ⁰
Walk	15	15 x 9=135
Cycle	8	8 × 9=72
-/		

Total frequency = 40 $360^{\circ} \div 40 = 9^{\circ}$ per person

• Line graph

Line graphs show changes in a single variable – in this graph changes in temperature can be observed.

6/30 The mean

The mean is usually known as the average. The mean is not a value from the original list. It is a typical value of a set of data

Mean = total of measures ÷ no. of measures

e.g.- Find mean speed of 6 cars travelling on a road

- Car 1 66mph Car 2 - 57mph Car 3 - 71mph
- Car 4 54mph
- Car 5 69mph Car 6 - 58mph

= 62.5mph

Mean average speed was 62.5mph

6